Quantized Rank R Matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized Rank R Matrices

First some old as well as new results about P.I. algebras, Ore extensions, and degrees are presented. Then quantized n × r matrices as well as certain quantized factor algebras M q (n) of Mq(n) are analyzed. For r = 1, . . . , n − 1, M q (n) is the quantized function algebra of rank r matrices obtained by working modulo the ideal generated by all (r+1)×(r+1) quantum subdeterminants and a certai...

متن کامل

2 3 Se p 19 99 QUANTIZED RANK R MATRICES

First some old as well as new results about P.I. algebras, Ore extensions, and degrees are presented. Then quantized n × r matrices as well as quantized factor algebras of M q (n) are analyzed. The latter are the quantized function algebra of rank r matrices obtained by working modulo the ideal generated by all (r + 1) × (r + 1) quantum subdeterminants and a certain localization of this algebra...

متن کامل

NUMBER OF RANK r SYMMETRIC MATRICES OVER FINITE FIELDS

We determine the number of n×n symmetric matrices over GF (p) that have rank r for 0 ≤ r ≤ n. In [BM2] Brent and McKay determine the number of n × n symmetric matrices over Zp that have determinant zero. Thus they determine the number of n× n symmetric matrices over Zp that have rank n. We extend their result to symmetric matrices over GF (p) and we determine the number of matrices that have ra...

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Some rank equalities for finitely many tripotent matrices

‎A rank equality is established for the sum of finitely many tripotent matrices via elementary block matrix operations‎. ‎Moreover‎, ‎by using this equality and Theorems 8 and 10 in [Chen M‎. ‎and et al‎. ‎On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications‎, ‎The Scientific World Journal 2014 (2014)‎, ‎Article ID 702413‎, ‎7 page...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2001

ISSN: 0021-8693

DOI: 10.1006/jabr.2001.8902