Quantized Rank R Matrices
نویسندگان
چکیده
منابع مشابه
Quantized Rank R Matrices
First some old as well as new results about P.I. algebras, Ore extensions, and degrees are presented. Then quantized n × r matrices as well as certain quantized factor algebras M q (n) of Mq(n) are analyzed. For r = 1, . . . , n − 1, M q (n) is the quantized function algebra of rank r matrices obtained by working modulo the ideal generated by all (r+1)×(r+1) quantum subdeterminants and a certai...
متن کامل2 3 Se p 19 99 QUANTIZED RANK R MATRICES
First some old as well as new results about P.I. algebras, Ore extensions, and degrees are presented. Then quantized n × r matrices as well as quantized factor algebras of M q (n) are analyzed. The latter are the quantized function algebra of rank r matrices obtained by working modulo the ideal generated by all (r + 1) × (r + 1) quantum subdeterminants and a certain localization of this algebra...
متن کاملNUMBER OF RANK r SYMMETRIC MATRICES OVER FINITE FIELDS
We determine the number of n×n symmetric matrices over GF (p) that have rank r for 0 ≤ r ≤ n. In [BM2] Brent and McKay determine the number of n × n symmetric matrices over Zp that have determinant zero. Thus they determine the number of n× n symmetric matrices over Zp that have rank n. We extend their result to symmetric matrices over GF (p) and we determine the number of matrices that have ra...
متن کاملOn higher rank numerical hulls of normal matrices
In this paper, some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated. A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given. Moreover, using the extreme points of the numerical range, the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$, where $A_1...
متن کاملSome rank equalities for finitely many tripotent matrices
A rank equality is established for the sum of finitely many tripotent matrices via elementary block matrix operations. Moreover, by using this equality and Theorems 8 and 10 in [Chen M. and et al. On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications, The Scientific World Journal 2014 (2014), Article ID 702413, 7 page...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2001
ISSN: 0021-8693
DOI: 10.1006/jabr.2001.8902